Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hematol Oncol ; 17(1): 23, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659046

RESUMO

BACKGROUND: The autologous anti-B-cell maturation antigen (BCMA) chimeric antigen receptor (CAR) T-cell therapy LCAR-B38M has been approved for the treatment of relapsed and refractory multiple myeloma in many countries across the world under the name ciltacabtagene autoleucel. LEGEND-2 was the first-in-human trial of LCAR-B38M and yielded deep and durable therapeutic responses. Here, we reported the outcomes in LEGEND-2 after a minimal 5-year follow-up. METHODS: Participants received an average dose of 0.5 × 106 cells/kg LCAR-B38M in split or single unfractionated infusions after cyclophosphamide-based lymphodepletion therapy. Investigator-assessed response, survival, safety and pharmacokinetics were evaluated. RESULTS: Seventy-four participants enrolled and had a median follow-up of 65.4 months. The 5-year progression-free survival (PFS) and overall survival (OS) rates were 21.0% and 49.1%, with progressive flattening of the survival curves over time. Patients with complete response (CR) had longer PFS and OS, with 5-year rates of 28.4% and 65.7%, respectively. Twelve patients (16.2%) remained relapse-free irrespective of baseline high-risk cytogenetic abnormality and all had normal humoral immunity reconstituted. An ongoing CR closely correlated with several prognostic baseline indices including favorable performance status, immunoglobulin G subtype, and absence of extramedullary disease, as well as a combination cyclophosphamide and fludarabine preconditioning strategy. Sixty-two (83.8%) suffered progressive disease (PD) and/or death; however, 61.1% of PD patients could well respond to subsequent therapies, among which, the proteasome inhibitor-based regimens benefited the most. Concerning the safety, hematologic and hepatic function recovery were not significantly different between non-PD and PD/Death groups. A low rate of second primary malignancy (5.4%) and no severe virus infection were observed. The patients who tested positive for COVID-19 merely presented self-limiting symptoms. In addition, a sustainable CAR T population of one case with persistent remission was delineated, which was enriched with indolently proliferative and lowly cytotoxic CD4/CD8 double-negative functional T lymphocytes. CONCLUSIONS: These data, representing the longest follow-up of BCMA-redirected CAR T-cell therapy to date, demonstrate long-term remission and survival with LCAR-B38M for advanced myeloma. TRIAL REGISTRATION: LEGEND-2 was registered under the trial numbers NCT03090659, ChiCTRONH-17012285.


Assuntos
Antígeno de Maturação de Linfócitos B , Imunoterapia Adotiva , Mieloma Múltiplo , Humanos , Pessoa de Meia-Idade , Masculino , Mieloma Múltiplo/terapia , Mieloma Múltiplo/mortalidade , Feminino , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Idoso , Seguimentos , Adulto , Antígeno de Maturação de Linfócitos B/imunologia , Receptores de Antígenos Quiméricos/uso terapêutico , Receptores de Antígenos Quiméricos/imunologia , Indução de Remissão , Taxa de Sobrevida
2.
Signal Transduct Target Ther ; 9(1): 62, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448403

RESUMO

Natural killer T cell lymphoma (NKTCL) is highly aggressive, with advanced stage patients poorly responding to intensive chemotherapy. To explore effective and safe treatment for newly diagnosed advanced stage NKTCL, we conducted a phase II study of anti-metabolic agent pegaspargase plus PD-1 antibody sintilimab (NCT04096690). Twenty-two patients with a median age of 51 years (range, 24-74) were enrolled and treated with induction treatment of pegaspargase 2500 IU/m2 intramuscularly on day 1 and sintilimab 200 mg intravenously on day 2 for 6 cycles of 21 days, followed by maintenance treatment of sintilimab 200 mg for 28 cycles of 21 days. The complete response and overall response rate after induction treatment were 59% (95%CI, 43-79%) and 68% (95%CI, 47-84%), respectively. With a median follow-up of 30 months, the 2 year progression-free and overall survival rates were 68% (95%CI, 45-83%) and 86% (95%CI, 63-95%), respectively. The most frequently grade 3/4 adverse events were neutropenia (32%, n = 7) and hypofibrinogenemia (18%, n = 4), which were manageable and led to no discontinuation of treatment. Tumor proportion score of PD-L1, peripheral blood high-density lipoprotein cholesterol, and apolipoprotein A-I correlated with good response, while PD-1 on tumor infiltrating lymphocytes and peripheral Treg cells with poor response to pegaspargase plus sintilimab treatment. In conclusion, the chemo-free regimen pegaspargase plus sintilimab was effective and safe in newly diagnosed, advanced stage NKTCL. Dysregulated lipid profile and immunosuppressive signature contributed to treatment resistance, providing an alternative therapeutic approach dual targeting fatty acid metabolism and CTLA-4 in NKTCL.


Assuntos
Anticorpos Monoclonais Humanizados , Asparaginase , Linfoma , Células T Matadoras Naturais , Polietilenoglicóis , Humanos , Receptor de Morte Celular Programada 1 , Adulto , Pessoa de Meia-Idade , Idoso , Adulto Jovem
3.
Sci Bull (Beijing) ; 68(21): 2607-2619, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37798178

RESUMO

Epstein-Barr virus (EBV) is the oncogenic driver of multiple cancers. However, the underlying mechanism of virus-cancer immunological interaction during disease pathogenesis remains largely elusive. Here we reported the first comprehensive proteogenomic characterization of natural killer/T-cell lymphoma (NKTCL), a representative disease model to study EBV-induced lymphomagenesis, incorporating genomic, transcriptomic, and in-depth proteomic data. Our multi-omics analysis of NKTCL revealed that EBV gene pattern correlated with immune-related oncogenic signaling. Single-cell transcriptome further delineated the tumor microenvironment as immune-inflamed, -deficient, and -desert phenotypes, in association with different setpoints of cancer-immunity cycle. EBV interacted with transcriptional factors to provoke GPCR interactome (GPCRome) reprogramming. Enhanced expression of chemokine receptor-1 (CCR1) on malignant and immunosuppressive cells modulated virus-cancer interaction on microenvironment. Therapeutic targeting CCR1 showed promising efficacy with EBV eradication, T-cell activation, and lymphoma cell killing in NKTCL organoid. Collectively, our study identified a previously unknown GPCR-mediated malignant progression and translated sensors of viral molecules into EBV-specific anti-cancer therapeutics.


Assuntos
Infecções por Vírus Epstein-Barr , Linfoma , Células T Matadoras Naturais , Humanos , Herpesvirus Humano 4/genética , Infecções por Vírus Epstein-Barr/complicações , Proteômica , Linfoma/complicações , Células T Matadoras Naturais/patologia , Microambiente Tumoral/genética
4.
Cell Death Discov ; 8(1): 495, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550096

RESUMO

KDM5C is a histone H3K4-specific demethylase, which has been shown to play a key role in biological disease and development. However, the role of KDM5C in trophoblasts at early pregnancy is currently unknown. Here, we showed that KDM5C was upregulated in placental trophoblasts from recurrent miscarriage (RM) patients compared with healthy controls (HCs). Trophoblast proliferation and invasion was inhibited by KDM5C overexpression and was promoted by KDM5C knockdown. Transcriptome sequencing revealed that elevated KDM5C exerted anti-proliferation and anti-invasion effects by repressing the expression of essential regulatory genes. The combination analysis of RNA-seq, ChIP-seq and CUT&Tag assay showed that KDM5C overexpression leads to the reduction of H3K4me3 on the promoters and the corresponding downregulation of expression of several regulatory genes in trophoblasts. Among these genes, TGFß2 and RAGE are essential for the proliferation and invasion of trophoblasts. Importantly, overexpression of KDM5C by a systemically delivered KDM5C adenovirus vector (Ad-KDM5C) promoted embryo resorption rate in mouse. Our results support that KDM5C is an important regulator of the trophoblast function during early pregnancy, and suggesting that KDM5C activity could be responsible for epigenetic alterations seen RM disease.

5.
FASEB J ; 36(10): e22562, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36125067

RESUMO

Oncoprotein AML1-ETO (AE) derived from t(8;21)(q22;q22) translocation is typically present in a portion of French-American-British-M2 subtype of acute myeloid leukemia (AML). Although these patients have relatively favorable prognoses, substantial numbers of them would relapse after conventional therapy. Here, we explored whether reinforcing the endogenous differentiation potential of t(8;21) AML cells would diminish the associated malignancy. In doing so, we noticed an expansion of immature erythroid blasts featured in both AML1-ETO9a (AE9a) and AE plus c-KIT (N822K) (AK) murine leukemic models. Interestingly, in the AE9a murine model, a spontaneous step-wise erythroid differentiation path, as characterized by the differential expression of CD43/c-Kit and the upregulation of several key erythroid transcription factors (TFs), accompanied the decline or loss of leukemia-initiating potential. Notably, overexpression of one of the key erythroid TFs, Ldb1, potently disrupted the repopulation of AE9a leukemic cells in vivo, suggesting a new promising intervention strategy of t(8;21) AML through enforcing their erythroid differentiation.


Assuntos
Leucemia Mieloide Aguda , Proteínas de Fusão Oncogênica , Animais , Cromossomos Humanos Par 21 , Cromossomos Humanos Par 8 , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas com Domínio LIM , Proteínas com Homeodomínio LIM , Leucemia Mieloide Aguda/metabolismo , Camundongos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína 1 Parceira de Translocação de RUNX1/genética , Translocação Genética
6.
Sci Adv ; 7(41): eabg4167, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34623912

RESUMO

Chemotherapy can effectively reduce the leukemic burden and restore immune cell production in most acute myeloid leukemia (AML) cases. Nevertheless, endogenous immunosurveillance usually fails to recover after chemotherapy, permitting relapse. The underlying mechanisms of this therapeutic failure have remained poorly understood. Here, we show that abnormal IL-36 production activated by NF-κB is an essential feature of mouse and human leukemic progenitor cells (LPs). Mechanistically, IL-36 directly activates inflammatory monocytes (IMs) in bone marrow, which then precludes clearance of leukemia mediated by CD8+ T cells and facilitates LP growth. While sparing IMs, common chemotherapeutic agents stimulate IL-36 production from residual LPs via caspase-1 activation, thereby enabling the persistence of this immunosuppressive IL-36­IM axis after chemotherapy. Furthermore, IM depletion by trabectedin, with chemotherapy and PD-1 blockade, can synergistically restrict AML progression and relapse. Collectively, these results suggest inhibition of the IL-36­IM axis as a potential strategy for improving AML treatment.

7.
Cell Discov ; 7(1): 98, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34697290

RESUMO

The amino acid response (AAR) and unfolded protein response (UPR) pathways converge on eIF2α phosphorylation, which is catalyzed by Gcn2 and Perk, respectively, under different stresses. This close interconnection makes it difficult to specify different functions of AAR and UPR. Here, we generated a zebrafish model in which loss of threonyl-tRNA synthetase (Tars) induces angiogenesis dependent on Tars aminoacylation activity. Comparative transcriptome analysis of the tars-mutant and wild-type embryos with/without Gcn2- or Perk-inhibition reveals that only Gcn2-mediated AAR is activated in the tars-mutants, whereas Perk functions predominantly in normal development. Mechanistic analysis shows that, while a considerable amount of eIF2α is normally phosphorylated by Perk, the loss of Tars causes an accumulation of uncharged tRNAThr, which in turn activates Gcn2, leading to phosphorylation of an extra amount of eIF2α. The partial switchover of kinases for eIF2α largely overwhelms the functions of Perk in normal development. Interestingly, although inhibition of Gcn2 and Perk in this stress condition both can reduce the eIF2α phosphorylation levels, their functional consequences in the regulation of target genes and in the rescue of the angiogenic phenotypes are dramatically different. Indeed, genetic and pharmacological manipulations of these pathways validate that the Gcn2-mediated AAR, but not the Perk-mediated UPR, is required for tars-deficiency induced angiogenesis. Thus, the interconnected AAR and UPR pathways differentially regulate angiogenesis through selective functions and mutual competitions, reflecting the specificity and efficiency of multiple stress response pathways that evolve integrally to enable an organism to sense/respond precisely to various types of stresses.

8.
Theranostics ; 11(14): 6891-6904, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093860

RESUMO

Rationale: Tanshinone, a type of diterpenes derived from salvia miltiorrhiza, is a particularly promising herbal medicine compound for the treatment of cancers including acute myeloid leukemia (AML). However, the therapeutic function and the underlying mechanism of Tanshinone in AML are not clear, and the toxic effect of Tanshinone limits its clinical application. Methods: Our work utilizes human leukemia cell lines, zebrafish transgenics and xenograft models to study the cellular and molecular mechanisms of how Tanshinone affects normal and abnormal hematopoiesis. WISH, Sudan Black and O-Dianisidine Staining were used to determine the expression of hematopoietic genes on zebrafish embryos. RNA-seq analysis showed that differential expression genes and enrichment gene signature with Tan I treatment. The surface plasmon resonance (SPR) method was used with a BIAcore T200 (GE Healthcare) to measure the binding affinities of Tan I. In vitro methyltransferase assay was performed to verify Tan I inhibits the histone enzymatic activity of the PRC2 complex. ChIP-qPCR assay was used to determine the H3K27me3 level of EZH2 target genes. Results: We found that Tanshinone I (Tan I), one of the Tanshinones, can inhibit the proliferation of human leukemia cells in vitro and in the xenograft zebrafish model, as well as the normal and malignant definitive hematopoiesis in zebrafish. Mechanistic studies illustrate that Tan I regulates normal and malignant hematopoiesis through direct binding to EZH2, a well-known histone H3K27 methyltransferase, and inhibiting PRC2 enzymatic activity. Furthermore, we identified MMP9 and ABCG2 as two possible downstream genes of Tan I's effects on EZH2. Conclusions: Together, this study confirmed that Tan I is a novel EZH2 inhibitor and suggested MMP9 and ABCG2 as two potential therapeutic targets for myeloid malignant diseases.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Abietanos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Hematopoese/efeitos dos fármacos , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Proteínas de Neoplasias/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Animais Geneticamente Modificados , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Imunoprecipitação da Cromatina , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Hematopoese/genética , Histonas/metabolismo , Humanos , Leucemia/enzimologia , Leucemia/genética , Metaloproteinase 9 da Matriz/genética , Proteínas de Neoplasias/genética , Complexo Repressor Polycomb 2/metabolismo , Ligação Proteica , RNA-Seq , Salvia miltiorrhiza/química , Ressonância de Plasmônio de Superfície , Transcriptoma/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
9.
Front Oncol ; 10: 1025, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714863

RESUMO

Background: KDM5C is a histone H3K4-specific demethylase, which has multiple biological functions during development and disease. However, the role of KDM5C in intrahepatic cholangiocarcinoma (ICC) remains unknown. Methods: Expression levels of KDM5C in ICC patients were determined by qRT-PCR, western blotting and immunohistochemical assay. The functions of KDM5C in cell proliferation and invasion were determined in human ICC cells and mouse xenograft model using KDM5C overexpression and knockdown strategies in vivo. RNA-seq analysis was applied to investigate the transcriptional program of KDM5C. In addition, ChIP-qPCR was used to determine the regulation of FASN by KDM5C. Results: Here, we show that KDM5C was downregulated in human ICC, where its diminished expression was associated with poor prognosis. ICC cell proliferation and invasion were inhibited by KDM5C overexpression. Moreover, KDM5C suppressed ICC proliferation and metastasis in vivo. RNA-sequencing showed that KDM5C inhibits key signal pathways of cell proliferation, cell invasion and fatty acid metabolism. ChIP-qPCR revealed that overexpression of KDM5C led to the reduction of H3K4me3 on the promoter and the corresponding downregulation of the expression of FASN, which represents the major target gene of KDM5C to mediate the proliferation and invasion of ICC cells. Conclusions: Our results revealed the role of KDM5C as a novel tumor suppressor in ICC largely by repressing FASN-mediated lipid acid metabolism and thus KDM5C may contribute to the pathogenesis of ICC.

10.
FASEB J ; 33(8): 9565-9576, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31136196

RESUMO

Secreted proteins provide crucial signals that have been implicated in the development of acute myeloid leukemia (AML) in the bone marrow microenvironment. Here we identify aberrant expressions of inflammatory IL-17B and its receptor (IL-17RB) in human and mouse mixed lineage leukemia-rearranged AML cells, which were further increased after exposure to chemotherapy. Interestingly, silencing of IL-17B or IL-17RB led to significant suppression of leukemic cell survival and disease progression in vivo. Moreover, the IL-17B-IL-17RB axis protected leukemic cells from chemotherapeutic agent-induced apoptotic effects. Mechanistic studies revealed that IL-17B promoted AML cell survival by enhancing ERK, NF-κB phosphorylation, and the expression of antiapoptotic protein B-cell lymphoma 2, which were reversed by small-molecule inhibitors. Thus, the inhibition of the IL-17B-IL-17RB axis may be a valid strategy to enhance sensitivity and therapeutic benefit of AML chemotherapy.-Guo, H.-Z., Niu, L.-T., Qiang, W.-T., Chen, J., Wang, J., Yang, H., Zhang, W., Zhu, J., Yu, S.-H. Leukemic IL-17RB signaling regulates leukemic survival and chemoresistance.


Assuntos
Interleucina-17/uso terapêutico , Receptores de Interleucina-17/metabolismo , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Biologia Computacional , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Imuno-Histoquímica , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos
11.
Nat Commun ; 9(1): 3369, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30135572

RESUMO

JMJD3, a stress-inducible H3K27 demethylase, plays a critical regulatory role in the initiation and progression of malignant hematopoiesis. However, how this histone modifier affects in a cell type-dependent manner remains unclear. Here, we show that in contrast to its oncogenic effect in preleukemia state and lymphoid malignancies, JMJD3 relieves the differentiation-arrest of certain subtypes (such as M2 and M3) of acute myeloid leukemia (AML) cells. RNA sequencing and ChIP-PCR analyses revealed that JMJD3 exerts anti-AML effect by directly modulating H3K4 and H3K27 methylation levels to activate the expression of a number of key myelopoietic regulatory genes. Mechanistic exploration identified a physical and functional association of JMJD3 with C/EBPß that presides the regulatory network of JMJD3. Thus, the leukemia regulatory role of JMJD3 varies in a disease phase- and lineage-dependent manner, and acts as a potential oncorepressor in certain subsets of AML largely by coupling to C/EBPß-centered myelopoietic program.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Leucemia Mieloide Aguda/metabolismo , Animais , Western Blotting , Proteína beta Intensificadora de Ligação a CCAAT/genética , Imunoprecipitação da Cromatina , Biologia Computacional , Citometria de Fluxo , Células HL-60 , Humanos , Técnicas In Vitro , Histona Desmetilases com o Domínio Jumonji/genética , Leucemia Mieloide Aguda/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID
12.
Biochim Biophys Acta Gene Regul Mech ; 1861(2): 106-116, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29378332

RESUMO

The histone demethylase Jmjd3 plays a critical role in cell lineage specification and differentiation at various stages of development. However, its function during normal myeloid development remains poorly understood. Here, we carried out a systematic in vivo screen of epigenetic factors for their function in hematopoiesis and identified Jmjd3 as a new epigenetic factor that regulates myelopoiesis in zebrafish. We demonstrated that jmjd3 was essential for zebrafish primitive and definitive myelopoiesis, knockdown of jmjd3 suppressed the myeloid commitment and enhanced the erythroid commitment. Only overexpression of spi1 but not the other myeloid regulators rescued the myeloid development in jmjd3 morphants. Furthermore, preliminary mechanistic studies demonstrated that Jmjd3 could directly bind to the spi1 regulatory region to alleviate the repressive H3K27me3 modification and activate spi1 expression. Thus, our studies highlight that Jmjd3 is indispensable for early zebrafish myeloid development by promoting spi1 expression.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Histona Desmetilases com o Domínio Jumonji/genética , Células Mieloides/metabolismo , Mielopoese/genética , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Proteínas de Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Diferenciação Celular/genética , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Técnicas de Silenciamento de Genes , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Lisina/metabolismo , Metilação , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
13.
Nat Commun ; 5: 3811, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24787902

RESUMO

We previously reported a fusion protein NUP98-IQCG in an acute leukaemia, which functions as an aberrant regulator of transcriptional expression, yet the structure and function of IQCG have not been characterized. Here we use zebrafish to investigate the role of iqcg in haematopoietic development, and find that the numbers of haematopoietic stem cells and multilineage-differentiated cells are reduced in iqcg-deficient embryos. Mechanistically, IQCG binds to calmodulin (CaM) and acts as a molecule upstream of CaM-dependent kinase IV (CaMKIV). Crystal structures of complexes between CaM and IQ domain of IQCG reveal dual CaM-binding footprints in this motif, and provide a structural basis for a higher CaM-IQCG affinity when deprived of calcium. The results collectively allow us to understand IQCG-mediated calcium signalling in haematopoiesis, and propose a model in which IQCG stores CaM at low cytoplasmic calcium concentrations, and releases CaM to activate CaMKIV when calcium level rises.


Assuntos
Calmodulina/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Proliferação de Células , Técnicas de Silenciamento de Genes , Proteínas de Choque Térmico HSP70/metabolismo , Hematopoese , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...